Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
2.
Expert Opin Drug Deliv ; : 1-15, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236621

RESUMO

INTRODUCTION: The Food and Drug Administration's approval of the first three-dimensional (3D) printed tablet, Spritam®, led to a burgeoning interest in using 3D printing to fabricate numerous drug delivery systems for different routes of administration. The high degree of manufacturing flexibility achieved through 3D printing facilitates the preparation of dosage forms with many actives with complex and tailored release profiles that can address individual patient needs. AREAS COVERED: This comprehensive review provides an in-depth look into the several 3D printing technologies currently utilized in pharmaceutical research. Additionally, the review delves into vaginal anatomy and physiology, 3D-printed drug delivery systems for vaginal applications, the latest research studies, and the challenges of 3D printing technology and future possibilities. EXPERT OPINION: 3D printing technology can produce drug-delivery devices or implants optimized for vaginal applications, including vaginal rings, intra-vaginal inserts, or biodegradable microdevices loaded with drugs, all custom-tailored to deliver specific medications with controlled release profiles. However, though the potential of 3D printing in vaginal drug delivery is promising, there are still challenges and regulatory hurdles to overcome before these technologies can be widely adopted and approved for clinical use. Extensive research and testing are necessary to ensure safety, effectiveness, and biocompatibility.

3.
AAPS PharmSciTech ; 24(7): 203, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783961

RESUMO

The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Ibuprofeno , Solubilidade , Tecnologia de Extrusão por Fusão a Quente/métodos , Liberação Controlada de Fármacos , Polímeros/química , Composição de Medicamentos/métodos , Comprimidos
4.
Pharmaceutics ; 15(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37765237

RESUMO

The current research aims to improve the solubility of the poorly soluble drug, i.e., ibuprofen, by developing self-emulsifying drug delivery systems (SEDDS) utilizing a twin screw melt granulation (TSMG) approach. Gelucire® 44/14, Gelucire® 48/16, and Transcutol® HP were screened as suitable excipients for developing the SEDDS formulations. Initially, liquid SEDDS (L-SEDDS) were developed with oil concentrations between 20-50% w/w and surfactant to co-surfactant ratios of 2:1, 4:1, 6:1. The stable formulations of L-SEDDS were transformed into solid SEDDS (S-SEDDS) using a suitable adsorbent carrier and compressed into tablets (T-SEDDS). The S-SEDDS has improved flow, drug release profiles, and permeability compared to pure drugs. The existence of the drug in an amorphous state was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction analysis (PXRD). The formulations with 20% w/w and 30% w/w of oil concentration and a 4:1 ratio of surfactant to co-surfactant have resulted in a stable homogeneous emulsion with a globule size of 14.67 ± 0.23 nm and 18.54 ± 0.55 nm. The compressed tablets were found stable after six months of storage at accelerated and long-term conditions. This shows the suitability of the TSMG approach as a single-step continuous manufacturing process for developing S-SEDDS formulations.

5.
Pharm Res ; 40(6): 1519-1540, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138135

RESUMO

Despite numerous research efforts, drug delivery through the oral route remains a major challenge to formulation scientists. The oral delivery of drugs poses a significant challenge because more than 40% of new chemical entities are practically insoluble in water. Low aqueous solubility is the main problem encountered during the formulation development of new actives and for generic development. A complexation approach has been widely investigated to address this issue, which subsequently improves the bioavailability of these drugs. This review discusses the various types of complexes such as metal complex (drug-metal ion), organic molecules (drug-caffeine or drug-hydrophilic polymer), inclusion complex (drug-cyclodextrin), and pharmacosomes (drug-phospholipids) that improves the aqueous solubility, dissolution, and permeability of the drug along with the numerous case studies reported in the literature. Besides improving solubility, drug-complexation provides versatile functions like improving stability, reducing the toxicity of drugs, increasing or decreasing the dissolution rate, and enhancing bioavailability and biodistribution. Apart, various methods to predict the stoichiometric ratio of reactants and the stability of the developed complex are discussed.


Assuntos
Ciclodextrinas , Preparações Farmacêuticas/química , Distribuição Tecidual , Ciclodextrinas/química , Disponibilidade Biológica , Solubilidade , Água/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-37124158

RESUMO

Aqueous solubility is one of the key parameters for achieving the desired drug concentration in systemic circulation for better therapeutic outcomes. Carbamazepine (CBZ) is practically insoluble in water, is a BCS class II drug, and exhibits dissolution-dependent oral bioavailability. This study explored a novel application of hot-melt extrusion in the manufacture and development of a thermodynamically stable solid crystal suspension (SCS) to improve the solubility and dissolution rate of CBZ. The SCSs were prepared using sugar alcohols, such as mannitol or xylitol, as crystalline carriers. The drug-sugar blend was processed by hot melt extrusion up to 40 % (w/w) drug loading. The extruded SCS was evaluated for drug content, saturation solubility, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), in vitro release, and stability studies. The physicochemical characterization revealed the highly crystalline existence of pure drug, pure carriers, and extruded SCS. FTIR analysis did not reveal any physical or chemical incompatibilities between the drug and sugar alcohols and showed a homogeneous CBZ distribution within respective crystalline carriers. The SEM micrographs of the solidified SCS revealed the presence of approximately 100 µm crystalline agglomerates. In vitro dissolution and solubility studies showed that the CBZ dissolution rate and solubility were improved significantly from both crystalline carriers for all tested drug loads. The SCSs showed no significant changes in drug content, in vitro release profiles, and thermal characteristics over 3 months of storage at accelerated stability conditions (40±2°C/75±5% RH). As a result, it can be inferred that the SCS strategy can be employed as a contemporary alternative technique to improve the dissolution rate of BCS class II drugs via HME technology.

7.
Int J Pharm X ; 5: 100156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636366

RESUMO

This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.

8.
Nanotheranostics ; 7(1): 70-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593800

RESUMO

Recent advances in drug delivery technologies utilizing a variety of carriers have resulted in a paradigm shift in the current approach to diagnosis and therapy. Mesoporous silica nanoparticles (MSNs) were developed in response to the need for materials with high thermal, chemical, and mechanical properties. The synthesis, ease of surface functionalization, tunable pore size, large surface area, and biocompatibility of MSNs make them useful in a variety of biomedical applications such as drug delivery, theranostics, and stem cell research. In addition, MSNs have a high capability of delivering actives ranging from small molecules such as drugs and amino acids to larger peptides, vaccines, and antibodies in general. Moreover, MSN-based transdermal delivery has sparked a lot of interest because of the increase in drug stability, permeation, and ease of functionalization. The functionalization of MSNs plays an important role in the efficient delivery of therapeutic agents in a highly controlled manner. This review introduced dermal and transdermal drug delivery systems, explained the anatomy of the skin, and summarized different barriers that affect the transdermal delivery of many therapeutic agents. In addition, the fundamentals of MSNs together with their physicochemical properties, synthesis approaches, raw materials used in their fabrication, and factors affecting their physicochemical properties will be covered. Moreover, the applications of MSNs in dermal and transdermal delivery, the biocompatibility of MSNs in terms of toxicity and safety, and biodistribution will be explained with the help of a detailed literature review. The review is covering the current and future perspectives of MSNs in the pharmaceutical field with therapeutic applications.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Porosidade , Dióxido de Silício/química , Distribuição Tecidual
9.
AAPS PharmSciTech ; 24(1): 47, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703024

RESUMO

The current research is focused on investigating the suitability of the twin screw melt granulation (TSMG) approach for improving the solubility of a non-steroidal anti-inflammatory (NSAIDs) drug (ibuprofen), by developing granules using lipid surfactants. The solubility of the drug within the solid lipid excipients (Gelucire® 48/16 and Gelucire® 50/13) was determined by differential scanning calorimetry (DSC). The formulations were developed for drug and lipid ratios of 1:1.5, 1:3, and 1:4.5 using Neusilin® US2 as a solid adsorbent carrier. The solid-state properties of the drug investigated using differential scanning calorimetry (DSC) have revealed the conversion of the drug to an amorphous form for 1:3 and 1:4.5 ratios of formulations confirmed by powder x-ray diffraction analysis (PXRD). Drug-excipient compatibility and formation of no interactions were characterized using Fourier transform infrared spectroscopy (FTIR). The granules with a 1:3 and 1:4.5 ratios of drug and lipid have improved drug dissolution and permeation, attributing to the formation of micellar emulsions. The stability of formulation with a 1:3 ratio of drug and lipid surfactant was preserved when stored in accelerated conditions. However, the formulation with a 1:4.5 ratio of drug and lipid failed to retain the amorphous state evidenced by the recrystallization of the drug. This shows the suitability of TSMG as a single-step continuous manufacturing process for developing melt granules to improve the solubility of poorly water-soluble drug substances.


Assuntos
Anti-Inflamatórios não Esteroides , Ibuprofeno , Ibuprofeno/química , Solubilidade , Anti-Inflamatórios não Esteroides/química , Excipientes/química , Lipídeos , Permeabilidade , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X
10.
AAPS PharmSciTech ; 24(1): 13, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477554

RESUMO

The main objective of the current research was to investigate the effect of tablet shapes (heart-shaped and round tablets) and infill densities (50% and 100%) on the drug release profiles of 3D printed tablets prepared by hot-melt extrusion paired with fused deposition modeling techniques. Drug-loaded filaments of 1.5 mm and 2.5 mm diameters were extruded using a Process 11 mm hot-melt extruder employing atorvastatin calcium as a model drug and Kollicoat® IR, Kollidon® VA64, Kollidon® 12PF, and Kolliphor® P407 as hydrophilic polymers. Filaments of Kollicoat® IR in combination with Kollidon® VA64/Kollidon® 12PF has resulted in successful printing of immediate release tablets. The mechanical properties of drug-loaded filaments were evaluated using a 3-point bend test and stiffness test. The transformation of a crystalline drug to an amorphous form and the absence of drug-polymer interactions were confirmed by differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The effect of infill density on drug release profiles was greater than that of tablet shape. The stability of 3D printed tablets was preserved even after storage under accelerated conditions (40 ± 2°C and 75 ± 5% RH) for 6 months. Thus, the 3D printing process of hot-melt extrusion paired with fused deposition modeling serves as an alternative manufacturing approach for developing patient-focused doses.


Assuntos
Atorvastatina , Humanos
11.
Int J Pharm ; 628: 122283, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36244563

RESUMO

The development of amorphous solid dispersions (ASDs) of high-melting-point drug substances using hot-melt extrusion (HME) continues to be challenging because of the limited availability of polymers that are stable at high processing temperatures. The main aim of this research project is to improve processability and develop three-dimensional (3D) cocrystal printlets of hydrochlorothiazide (HCTZ) using HME paired fused deposition modeling (FDM) techniques. Among the investigated coformers, nicotinamide (NIC) was identified as a suitable coformer. The cocrystal filaments of HCTZ-NIC and pure HCTZ that were suitable for the FDM 3D-printing process were developed using a Process 11 mm Twin -Screw Extruder with Kollicoat® IR and Kollidon® VA64 as polymeric carriers. The investigation of extruded filaments using differential scanning calorimetry (DSC) revealed the formation of HCTZ-NIC cocrystals, which was further confirmed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction analysis (PXRD). The 3D-printed printlets of HCTZ-NIC with 50 % infill density resulted in improved dissolution and permeability compared to pure drug. This demonstrates the suitability of the HME-paired FDM 3D-printing technique for improving solubility and developing on-demand patient-focused dosage forms for poorly soluble high-melting-point drug substances by utilizing a cocrystal approach.


Assuntos
Tecnologia de Extrusão por Fusão a Quente , Hidroclorotiazida , Humanos , Estudos de Viabilidade , Comprimidos/química , Solubilidade , Polímeros/química , Impressão Tridimensional , Liberação Controlada de Fármacos
12.
Pharmaceutics ; 14(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36145555

RESUMO

Among various drug administration routes, oral drug delivery is preferred and is considered patient-friendly; hence, most of the marketed drugs are available as conventional tablets or capsules. In such cases, the administration of drugs with or without food has tremendous importance on the bioavailability of the drugs. The presence of food may increase (positive effect) or decrease (negative effect) the bioavailability of the drug. Such a positive or negative effect is undesirable since it makes dosage estimation difficult in several diseases. This may lead to an increased propensity for adverse effects of drugs when a positive food effect is perceived. However, a negative food effect may lead to therapeutic insufficiency for patients suffering from life-threatening disorders. This review emphasizes the causes of food effects, formulation strategies to overcome the fast-fed variability, and the regulatory aspects of drugs with food effects, which may open new avenues for researchers to design products that may help to eliminate fast-fed variability.

13.
Cells ; 11(15)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35954282

RESUMO

Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients' quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.


Assuntos
Qualidade de Vida , Cicatrização , Bandagens , Humanos , Pele/lesões , Fenômenos Fisiológicos da Pele
14.
Eur J Pharm Biopharm ; 177: 211-223, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835328

RESUMO

Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Humanos , Pós , Comprimidos/química , Tecnologia Farmacêutica/métodos
15.
Int J Pharm ; 624: 121951, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35753536

RESUMO

Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.


Assuntos
Química Farmacêutica , Tecnologia de Extrusão por Fusão a Quente , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Temperatura Alta , Polímeros , Solubilidade
16.
AAPS PharmSciTech ; 23(1): 56, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35043282

RESUMO

Crystal engineering is an emerging tool for altering the physicochemical properties of drug candidates. The objective of the current investigation was to develop cocrystals of hydrochlorothiazide (HCT) with coformers such as nicotinamide (NIC), resorcinol (RSL), and catechol (CAT) using hot-melt extrusion (HME) technology. The liquid-assisted grinding (LAG) method was used to prepare cocrystals by grinding the drug and coformer in a definite molar ratio as a reference and to check the feasibility of cocrystal formation. Cocrystals were prepared using HME and evaluated with differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and scanning electron microscopy and compared with LAG cocrystals. Barrel temperature was the critical process parameter for producing high-quality cocrystals in HME. All cocrystals exhibited improved solubility compared to the native drug, and HCT-NIC cocrystals showed a two-fold increase in solubility. Similarly, HCT-RSL and HCT-CAT showed higher solubility profiles and improved diffusion/permeability characteristics compared to that of the pure HCT due to the drug-coformer interactions in the cocrystals. In this study, the solubility of the coformer was the key factor determining cocrystal solubilization. However, hot-melt extrusion is an alternative technology for creating pharmaceutical cocrystals and has potential for industrial scale-up.


Assuntos
Hidroclorotiazida , Preparações Farmacêuticas , Varredura Diferencial de Calorimetria , Cristalização , Permeabilidade , Solubilidade
17.
Adv Powder Technol ; 32(7): 2591-2604, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34262241

RESUMO

Dose dumping is the major drawback of sustained release (SR) matrices. The current research aimed to develop the stable lipid-based SR matrices of quetiapine fumarate (QTF) using Geleol™ (glyceryl monostearate; GMS) as the lipid matrix carrier and Klucel™ EF (HPC EF), Kollidon® VA64, and Kollidon® 12PF as hydrophilic binders. Formulations were developed using advanced twin screw melt granulation (TSMG) approach and the direct compression (DC) technique. Compared with the blends of DC, the granules of TSMG exhibited improved flow properties and tabletability. Solid-state characterization by differential scanning calorimetry of the prepared granules exhibited the crystalline nature of the lipid. Fourier transform infrared spectroscopy demonstrated no interaction between the formulation ingredients. The compressed matrices of TSMG and DC resulted in the sustained release of a drug over 16-24 h. Upon storage under accelerated conditions for 6 months, the matrices of TSMG retained their sustained release characteristics with no dose dumping in alcohol, whereas the matrices of DC resulted in the dose dumping of the drug attributing to the loss of matrix integrity and phase separation of lipid. Thus, it is concluded that the uniform distribution of a softened binder into a molten lipid carrier results in the stable matrices of TSMG.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33717230

RESUMO

Enhancing the solubility of active drug ingredients is a major challenge faced by scientists and researchers. Different approaches have been explored for the enhancement of solubility and physicochemical properties of drugs, without affecting their stability or pharmacological activity. Among the various strategies available, pharmaceutical co-crystals, co-amorphous systems, and pharmaceutical salts as multicomponent systems (MCS) have gained interest to improve physicochemical properties of drugs. Development of MCS by conventional methods involves the utilization of excess amount of solvents, thus, making the product prone to instability, and may also cause harmful side effects in patients. Scale up is critical and involves the investment of huge capital and time. Lately, hot-melt extrusion has been utilized in the development of MCS to enhance solubility, bioavailability, stability, and physicochemical properties of the drugs. In this review, the authors discussed the development of different MCS produced via hot-melt extrusion technology. Specifically, approaches for screening of co-formers and co-crystals, selection of excipients for co-amorphous systems, pharmaceutical salts, and significance of MCS and process parameters affecting product quality are discussed.

19.
Pharmaceutics ; 13(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673703

RESUMO

The objective of this study was to enhance dissolution and permeation of a low soluble, absorbable fexofenadine hydrochloride (FFH) by preparing solid dispersions using polyethylene glycol 20,000 (PEG 20,000) and poloxamer 188 as carriers. The phase solubility measurement for the supplied FFH revealed a linear increase in the solubility of fexofenadine with increasing carrier concentration in water (1.45 mg/mL to 11.78 mg/mL with 0% w/v to 30% w/v PEG 20,000; 1.45 mg/mL to 12.27 mg/mL with 0% w/v to 30% w/v poloxamer 188). To select the appropriate drug carrier concentration, a series of solid dispersions were prepared in the drug carrier weight ratios of 1:1, 1:2 and 1:4 by fusion method. The solid dispersions composed of drug carrier at 1:4 weight ratio showed highest dissolution with the time required for the release of 50% of the drug <15 min compared to the supplied FFH (>120 min). The intestinal absorption study presented a significant improvement in the absorption of drug from the solid dispersions composed of poloxamer 188 than PEG 20,000. In summary, the solid dispersions of FFH prepared using PEG 20,000 and poloxamer 188 demonstrated improved dissolution and absorption than supplied FFH and could be used to improve the oral bioavailability of fexofenadine.

20.
Curr Drug Deliv ; 18(1): 4-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32811398

RESUMO

The misuse, abuse, and illicit use of prescription opioid analgesics is a global public health concern. However, there are many viable therapeutic options for the treatment of patients with chronic pain. Both intact and manipulated opioid drug products are abused by various routes such as oral, nasal, and injection, which may lead to overdose, drug addiction, and even death. To combat the abuse of these medications, regulatory agencies and pharmaceutical companies are switching their interest towards developing Abuse Deterrent Formulations (ADFs), with the intent to deter the abuse of opioid products to a maximum extent. There are several manufacturing strategies implemented in an attempt to develop ADFs. An example includes matrix tablets of high molecular weight polymers such as polyethylene oxide. The scalable and continuous manufacturing techniques, such as Hot-Melt Extrusion (HME), is increasingly accepted by pharmaceutical companies to advance the development and manufacturing of ADFs. The application of the HME technique in the development of ADFs may overcome the challenges of opioid analgesic formulation development and provide improved protection against misuse and abuse, while also ensuring access to safe and effective use in patients with chronic pain. This review deals with a brief overview of strategies, with emphasis on HME to deter opioid abuse, in vitro characterization methods, commonly used excipients in the development of ADFs, and regulatory standards to meet the requirements of ADFs.


Assuntos
Formulações de Dissuasão de Abuso , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/uso terapêutico , Química Farmacêutica , Composição de Medicamentos , Tecnologia de Extrusão por Fusão a Quente , Humanos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA